Perioperative Anesthesia Reports
https://par.saesp.org.br/article/doi/10.61724/par.e00042024
Perioperative Anesthesia Reports
Narrative Review

Neurological outcomes in children assessed with cerebral near-infrared spectroscopy: a mini review

Anderson José Gonçalves, Paulo Sérgio Mateus Marcelino Serzedo, Vinícius Caldeira Quintão

Downloads: 1
Views: 9

Abstract

Cerebral hypoxemia is associated with several clinical conditions, making the monitoring of brain oxygenation and perfusion essential. Cerebral near-infrared spectroscopy (NIRS) has emerged as a valuable tool for this purpose, particularly in neonatal and pediatric perioperative and intensive care settings. In recent years, the utilization of NIRS has increased significantly; however, existing literature points to uncertainties regarding its clinical advantages and disadvantages. We have conducted a systematic review encompassing various studies, excluding case reports and editorials. Our primary outcomes included moderate to severe persistent cognitive or neurological deficits. NIRS is particularly important for its ability to rapidly detect early hypoxemia, which can help prevent potential ischemic events and adverse outcomes in infants. Despite the variability in studies regarding the use of NIRS, the available data strongly support its integration into both clinical and surgical settings as a valuable medical tool.

Keywords

NIRS; near-infrared spectroscopy; pediatrics; neurodevelopment

References

1. Scott JP, Hoffman GM. Near‐infrared spectroscopy: exposing the dark (venous) side of the circulation. Paediatr Anaesth. 2014;24(1):74-88. http://doi.org/10.1111/ pan.12301. PMid:24267637. 
2. Kurth CD, McCann JC, Wu J, Miles L, Loepke AW. Cerebral oxygen saturation-time threshold for hypoxic-ischemic injury in piglets. Anesth Analg. 2009;108(4):1268- 77. http://doi.org/10.1213/ane.0b013e318196ac8e. PMid:19299799. 
3. Weber F, Honing GHM, Scoones GP. Arterial blood pressure in anesthetized neonates and infants: a retrospective analysis of 1091 cases. Paediatr Anaesth. 2016;26(8):815-22. http://doi.org/10.1111/pan.12924. PMid:27218872. 
4. Weiss M, Vutskits L, Hansen TG, Engelhardt T. Safe anesthesia for every tot – the SAFETOTS initiative. Curr Opin Anaesthesiol. 2015;28(3):302-7. http://doi.org/10.1097/ ACO.0000000000000186. PMid:25887194. 
5. De Graaff JC, Pasma W, van Buuren S, Duijghuisen J, Nafiu OO, Kheterpal S, et al. Reference values for noninvasive blood pressure in children during anesthesia. Anesthesiology. 2016;125(5):904-13. http://doi. org/10.1097/ALN.0000000000001310. PMid:27606930. 
6. Koch HW, Hansen TG. Perioperative use of cerebral and renal near‐infrared spectroscopy in neonates: a 24‐h observational study. Paediatr Anaesth. 2016;26(2):190-8. http://doi.org/10.1111/pan.12831. PMid:26725989. 
7. Saasouh W, Christensen AL, Xing F, Chappell D, Lumbley J, Woods B, et al. Incidence of intraoperative hypotension during non-cardiac surgery in community anesthesia practice: a retrospective observational analysis. Perioper Med (Lond). 2023;12(1):29. http://doi.org/10.1186/ s13741-023-00318-y. PMid:37355641. 
8. McCann ME, Soriano SG. Perioperative central nervous system injury in neonates. Br J Anaesth. 2012;109(Suppl 1):i60-7. http://doi.org/10.1093/bja/ aes424. PMid:23242752. 
9. Zhao N, Chung TD, Guo Z, Jamieson J, Liang L, Linville RM, et al. The influence of physiological and pathological perturbations on blood-brain barrier function. Front Neurosci. 2023;17:17. http://doi.org/10.3389/ fnins.2023.1289894. 
10. Kreeger RN, Ramamoorthy C, Nicolson SC, Ames WA, Hirsch R, Peng LF, et al. Evaluation of pediatric near-  
infrared cerebral oximeter for cardiac disease. Ann Thorac Surg. 2012;94(5):1527-33. http://doi.org/10.1016/j.athoracsur.2012.05.096. PMid:22858270.
11. Hashem M, Wu Y, Dunn JF. The relationship between cytochrome c oxidase, CBF and CMRO 2 in mouse cortex: A NIRS-MRI study. J Cereb Blood Flow Metab. 2023;43(8):1351-64. http://doi.org/10.1177/0271678X231165842. PMid:36950950.
12. Stern M, Nieuwenhuijs-Moeke GJ, Absalom A, van Leeuwen B, van der Wal-Huisman H, Plas M, et al. Association between anaesthesia-related factors and postoperative neurocognitive disorder: a post-hoc analysis. BMC Anesthesiol. 2023;23(1):368. http://doi.org/10.1186/s12871-023-02318-3. PMid:37950163.
13. Verhagen EA, Van Braeckel KNJA, van der Veere CN, Groen H, Dijk PH, Hulzebos CV, et al. Cerebral oxygenation is associated with neurodevelopmental outcome of preterm children at age 2 to 3 years. Dev Med Child Neurol. 2015;57(5):449-55. http://doi.org/10.1111/dmcn.12622. PMid:25382744.
14. Green DW, Kunst G. Cerebral oximetry and its role in adult cardiac, non‐cardiac surgery and resuscitation from cardiac arrest. Anaesthesia. 2017;72(Suppl 1):48-57. http://doi.org/10.1111/anae.13740. PMid:28044331.
15. Green MS, Sehgal S, Tariq R. Near-Infrared Spectroscopy. Semin Cardiothorac Vasc Anesth. 2016;20(3):213-24. http://doi.org/10.1177/1089253216644346. PMid:27206637.
16. Hoffman GM, Brosig CL, Mussatto KA, Tweddell JS, Ghanayem NS. Perioperative cerebral oxygen saturation in neonates with hypoplastic left heart syndrome and childhood neurodevelopmental outcome. J Thorac Cardiovasc Surg. 2013;146(5):1153-64. http://doi.org/10.1016/j.jtcvs.2012.12.060. PMid:23317941.
17. Hunter CL, Oei JL, Suzuki K, Lui K, Schindler T. Patterns of use of near‐infrared spectroscopy in neonatal intensive care units: international usage survey. Acta Paediatr. 2018;107(7):1198-204. http://doi.org/10.1111/apa.14271. PMid:29430749.
18. Yu Y, Zhang K, Zhang L, Zong H, Meng L, Han R. Cerebral near-infrared spectroscopy (NIRS) for perioperative monitoring of brain oxygenation in children and adults. Cochrane Database Syst Rev. 2018;1:CD010947. http://doi.org/10.1002/14651858.CD010947.pub2. PMid:29341066.
19. Bevan PJW. Should cerebral near-infrared spectroscopy be standard of care in adult cardiac surgery? Heart Lung Circ. 2015;24(6):544-50. http://doi.org/10.1016/j.hlc.2015.01.011. PMid:25735719.
20. Huber W, Zanner R, Schneider G, Schmid R, Lahmer T. Assessment of regional perfusion and organ function: less and non-invasive techniques. Front Med (Lausanne). 2019;6:50. http://doi.org/10.3389/fmed.2019.00050. PMid:30968023.
21. Hyttel-Sorensen S, Greisen G, Als-Nielsen B, Gluud C. Cerebral near-infrared spectroscopy monitoring for prevention of brain injury in very preterm infants. Cochrane Database Syst Rev. 2017;9:CD011506. http://doi.org/10.1002/14651858.CD011506.pub2. PMid:28869278.
22. Daubeney PEF, Pilkington SN, Janke E, Charlton GA, Smith DC, Webber SA. Cerebral oxygenation measured by near-infrared spectroscopy: comparison with jugular bulb oximetry. Ann Thorac Surg. 1996;61(3):930-4. http://doi.org/10.1016/0003-4975(95)01186-2. PMid:8619720.
23. Ricci Z, Garisto C, Favia I, Schloderer U, Giorni C, Fragasso T, et al. Cerebral NIRS as a marker of superior vena cava oxygen saturation in neonates with congenital heart disease. Paediatr Anaesth. 2010;20(11):1040-5. http://doi.org/10.1111/j.1460-9592.2010.03430.x. PMid:20964771.
24. Sood BG, McLaughlin K, Cortez J. Near-infrared spectroscopy: applications in neonates. Semin Fetal Neonatal Med. 2015;20(3):164-72. http://doi.org/10.1016/j.siny.2015.03.008. PMid:25934116.
25. Lee JH, Jang YE, Song IK, Kim EH, Kim HS, Kim JT. Near-infrared spectroscopy and vascular occlusion test for predicting clinical outcome in pediatric cardiac patients: a prospective observational study. Pediatr Crit Care Med. 2018;19(1):32-9. http://doi.org/10.1097/PCC.0000000000001386. PMid:29140967.
26. Karlsson V, Sporre B, Fredén F, Ågren J. Randomized controlled trial of low vs high oxygen during neonatal anesthesia: Oxygenation, feasibility, and oxidative stress. Paediatr Anaesth. 2022;32(9):1062-9. http://doi.org/10.1111/pan.14519. PMid:35791748.
27. Rhondali O, Pouyau A, Mahr A, Juhel S, Queiroz M, Rhzioual‐Berrada K, et al. Sevoflurane anesthesia and brain perfusion. Paediatr Anaesth. 2015;25(2):180-5. http://doi.org/10.1111/pan.12512. PMid:25224780.
28. Olbrecht VA, Skowno J, Marchesini V, Ding L, Jiang Y, Ward CG, et al. An international, multicenter, observational study of cerebral oxygenation during infant and neonatal anesthesia. Anesthesiology. 2018;128(1):85-96. http://doi.org/10.1097/ALN.0000000000001920. PMid:29019815.
29. De Silvestro AA, Krüger B, Steger C, Feldmann M, Payette K, Krüger J, et al. Cerebral desaturation during neonatal congenital heart surgery is associated with perioperative brain structure alterations but not with neurodevelopmental outcome at 1 year. Eur J Cardiothorac Surg. 2022;62(5):ezac138. http://doi.org/10.1093/ejcts/ezac138. PMid:35373833.
30. Iller M, Neunhoeffer F, Heimann L, Zipfel J, Schuhmann MU, Scherer S, et al. Intraoperative monitoring of cerebrovascular autoregulation in infants and toddlers receiving major elective surgery to determine the individually optimal blood pressure – a pilot study. Front Pediatr. 2023;11:1110453. http://doi.org/10.3389/fped.2023.1110453. PMid:36865688.
31. Alderliesten T, Lemmers PMA, van Haastert IC, de Vries LS, Bonestroo HJ, Baerts W, et al. Hypotension in preterm neonates: low blood pressure alone does not affect neurodevelopmental outcome. J Pediatr. 2014;164(5):986-91. http://doi.org/10.1016/j.jpeds.2013.12.042. PMid:24484771.
32. McCann ME, Schouten ANJ. Beyond survival; influences of blood pressure, cerebral perfusion and anesthesia on neurodevelopment. Paediatr Anaesth. 2014;24(1):68-73. http://doi.org/10.1111/pan.12310. PMid:24267703.
33. Wolf AR, Humphry AT. Limitations and vulnerabilities of the neonatal cardiovascular system: considerations for anesthetic management. Paediatr Anaesth. 2014;24(1):5-9. http://doi.org/10.1111/pan.12290. PMid:24330443.
34. Denault A, Deschamps A, Murkin JM. A proposed algorithm for the intraoperative use of cerebral near-infrared spectroscopy. Semin Cardiothorac Vasc Anesth. 2007;11(4):274-81. http://doi.org/10.1177/1089253207311685. PMid:18270192.
35. Hansen ML, Hyttel-Sørensen S, Jakobsen JC, Gluud C, Kooi EM, Mintzer J, et al. The clinical effects of cerebral near-infrared spectroscopy monitoring (NIRS) versus no monitoring: a protocol for a systematic review with meta-analysis and trial sequential analysis. Syst Rev. 2021;10(1):111. http://doi.org/10.1186/s13643-021-01660-2. PMid:33863369.
36. Chalak L, Hellstrom-Westas L, Bonifacio S, Tsuchida T, Chock V, El-Dib M, et al. Bedside and laboratory neuromonitoring in neonatal encephalopathy. Semin Fetal Neonatal Med. 2021;26(5):101273. http://doi.org/10.1016/j.siny.2021.101273. PMid:34393094.
37. Seager E, Longley C, Aladangady N, Banerjee J. Measurement of gut oxygenation in the neonatal population using near-infrared spectroscopy: a clinical tool? Arch Dis Child Fetal Neonatal Ed. 2020;105(1):76-86. http://doi.org/10.1136/archdischild-2018-316750. PMid:31154420.
38. Beć KB, Grabska J, Huck CW. Near-infrared spectroscopy in bio-applications. Molecules. 2020;25(12):2948. http://doi.org/10.3390/molecules25122948. PMid:32604876.
39. Zhong W, Ji Z, Sun C. A review of monitoring methods for cerebral blood oxygen saturation. Healthcare (Basel). 2021;9(9):1104. http://doi.org/10.3390/healthcare9091104. PMid:34574878.
40. Šuškevičienė I, ČeslavaRugytė D, Bukauskas T, Vilkė A, Bilskienė D, Macas A. Near-infrared spectroscopy in newborns and infants under general anesthesia. Acta Med Litu. 2012;19(3):232-6. http://doi.org/10.6001/actamedica.v19i3.2457.
41. Pasma W, Peelen LM, van den Broek S, van Buuren S, van Klei WA, de Graaff JC. Patient and anesthesia characteristics of children with low pre‐incision blood pressure: a retrospective observational study. Acta Anaesthesiol Scand. 2020;64(4):472-80. http://doi.org/10.1111/aas.13520. PMid:31833065.
42. El-Dib M, Soul JS. Monitoring and management of brain hemodynamics and oxygenation. Handb Clin Neurol. 2019;162:295-314. http://doi.org/10.1016/B978-0-444-64029-1.00014-X. PMid:31324316.
43. van Zadelhoff AC, Poppe JA, Willemsen S, Mauff K, van Weteringen W, Goos TG, et al. Age-dependent changes in arterial blood pressure in neonates during the first week of life: reference values and development of a model. Br J Anaesth. 2023;130(5):585-94. http://doi.org/10.1016/j.bja.2023.01.024. PMid:36858885.
44. Symeonidis D, Baloyiannis I, Koukoulis G, Pratsas K, Georgopoulou S, Efthymiou M, et al. Prospective non-randomized comparison of open versus laparoscopic transabdominal preperitoneal (TAPP) inguinal hernia repair under different anesthetic methods. Surg Today. 2014;44(5):906-13. http://doi.org/10.1007/s00595-013-0805-0. PMid:24318366.
45. McCann ME, Withington DE, Arnup SJ, Davidson AJ, Disma N, Frawley G, et al. Differences in blood pressure in infants after general anesthesia compared to awake regional anesthesia (GAS study: a prospective randomized trial). Anesth Analg. 2017;125(3):837-45. http://doi.org/10.1213/ANE.0000000000001870. PMid:28489641.
46. Williams M, Lee JK. Intraoperative blood pressure and cerebral perfusion: strategies to clarify hemodynamic goals. Paediatr Anaesth. 2014;24(7):657-67. http://doi.org/10.1111/pan.12401. PMid:24725244.
47. Felling RJ, Kamerkar A, Friedman ML, Said AS, LaRovere KL, Bell MJ, et al. Neuromonitoring during ECMO support in children. Neurocrit Care. 2023;39(3):701-13. http://doi.org/10.1007/s12028-023-01675-8. PMid:36720837.
48. Hou X, Ding H, Teng Y, Zhou C, Zhang D. NIRS study of cerebral oxygenation and hemodynamics in neonate at birth. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1229-32. http://doi.org/10.1109/IEMBS.2011.6090289. PMid:22254538.
49. Sottas CE, Cumin D, Anderson BJ. Blood pressure and heart rates in neonates and preschool children: an analysis from 10 years of electronic recording. Paediatr Anaesth. 2016;26(11):1064-70. http://doi.org/10.1111/pan.12987. PMid:27515457.
50. Blohm ME, Obrecht D, Hartwich J, Singer D. Effect of cerebral circulatory arrest on cerebral near‐infrared spectroscopy in pediatric patients. Paediatr Anaesth. 2014;24(4):393-9. http://doi.org/10.1111/pan.12328. PMid:24354795.
51. Eichhorn L, Erdfelder F, Kessler F, Doerner J, Thudium MO, Meyer R, et al. Evaluation of near-infrared spectroscopy under apnea-dependent hypoxia in humans. J Clin Monit Comput. 2015;29(6):749-57. http://doi.org/10.1007/s10877-015-9662-2. PMid:25649718.
52. Evans KM, Rubarth LB. Investigating the role of near-infrared spectroscopy in neonatal medicine. Neonatal Netw. 2017;36(4):189-95. http://doi.org/10.1891/0730-0832.36.4.189. PMid:28764821.
53. Klowak JA, Nguyen ALV, Malik A, Hornby L, Doig CJ, Kawchuk J, et al. Diagnostic test accuracy for cessation of circulation during death determination: a systematic review. Can J Anaesth. 2023;70(4):671-84. http://doi.org/10.1007/s12630-023-02424-3. PMid:37138156.
54. Cheung A, Tu L, Macnab A, Kwon BK, Shadgan B. Detection of hypoxia by near-infrared spectroscopy and pulse oximetry: a comparative study. J Biomed Opt. 2022;27(07). http://doi.org/10.1117/1.JBO.27.7.077001. PMid:35879816.
55. Kalteren WS, Verhagen EA, Mintzer JP, Bos AF, Kooi EMW. Anemia and red blood cell transfusions, cerebral oxygenation, brain injury and development, and neurodevelopmental outcome in preterm infants: a systematic review. Front Pediatr. 2021;9:644462. http://doi.org/10.3389/fped.2021.644462. PMid:33718309.


Submitted date:
08/07/2024

Accepted date:
11/22/2024

67a209e2a953955b601fca3f par Articles
Links & Downloads

Periop. Anesth. Rep.

Share this page
Page Sections