Perioperative Anesthesia Reports
https://par.saesp.org.br/article/doi/10.61724/par.e00132024
Perioperative Anesthesia Reports
Narrative Review

Key concepts in artificial intelligence for anesthesiologists: a literature review

Verônica Neves Fialho Queiroz, Renata Prôa Dalle Lucca, Carolina Ashihara, Ricardo Kenji Nawa, Guilherme Alberto Sousa Ribeiro, Paulo Victor dos Santos, Flávio Takaoka, João Manoel Silva Júnior, Maria José Carvalho Carmona, Renato Carneiro de Freitas Chaves

Downloads: 0
Views: 88

Abstract

Artificial Intelligence (AI) is revolutionizing medical practice across various fields, including anesthesiology. Despite its potential, AI adoption in clinical settings faces challenges related to data robustness, result interpretation by anesthesiologists, and ethical issues around privacy and automated decision-making. This narrative review aims to provide anesthesiologists with an updated overview of AI applications in medical practice, empowering them to become active contributors to this transformation. With the widespread adoption of electronic health records and the availability of large-scale perioperative data, AI applications have rapidly evolved, offering the potential to make anesthetic management more personalized, predictive, and preventive. AI applications in anesthesiology span the perioperative period, from preoperative planning to postoperative care.
Recent advances allow AI to assist in interpreting diagnostic tests, predicting complications, real-time monitoring, and supporting clinical decision-making. However, for anesthesiologists to use these tools effectively, they must possess a foundational understanding of AI, including its terminology, algorithms, validation methods, and the ethical and practical limitations of its use. This article seeks to guide readers in acquiring the necessary knowledge to become well-informed anesthesiologists capable of integrating AI into their practice efficiently. By fostering collaboration and understanding between anesthesiologists and AI technologies, we aim to drive meaningful advancements in anesthetic
practice and improve patient outcomes.

Keywords

Anesthesiology; machine learning; medical care; artificial intelligence

References

Hashimoto DA, Witkowski E, Gao L, Meireles O, Rosman G. Artificial intelligence in anesthesiology: current techniques, clinical applications, and limitations. Anesthesiology. 2020;132(2):379-94. http://doi.org/10.1097/ALN.0000000000002960. PMid:31939856.
Alves M, Seringa J, Silvestre T, Magalhães T. Use of Artificial Intelligence tools in supporting decision-making in hospital management. BMC Health Serv Res. 2024;24(1):1282. http://doi.org/10.1186/s12913-024-11602-y. PMid:39456040.
Pfeilsticker FJDA, Siqueri CASA, Campos NS, Aguiar FG, Romagnoli ML, Chaves RCF, et al. Intensive care unit patients’ opinion on enrollment in clinical research: a multicenter survey. PLoS One. 2020;15(8):e0236675. http://doi.org/10.1371/journal.pone.0236675. PMid:32790704.
Gombolay GY, Gopalan N, Bernasconi A, Nabbout R, Megerian JT, Siegel B, et al. Review of Machine Learning and Artificial Intelligence (ML/AI) for the Pediatric Neurologist. Pediatr Neurol. 2023;141:42-51. http://doi.org/10.1016/j.pediatrneurol.2023.01.004. PMid:36773406.
Silva JM Jr, Chaves RCF, Corrêa TD, Assunção MSC, Katayama HT, Bosso FE, et al. Epidemiology and outcome of high-surgical-risk patients admitted to an intensive care unit in Brazil. Rev Bras Ter Intensiva. 2020;32(1):17-27. http://doi.org/10.5935/0103-507X.20200005. PMid:32401988.
Bellini V, Cascella M, Cutugno F, Russo M, Lanza R, Compagnone C, et al. Understanding basic principles of Artificial Intelligence: a practical guide for intensivists. Acta Biomed. 2022;93(5):e2022297. PMid:36300214.
Kendale S, Kulkarni P, Rosenberg AD, Wang J. Supervised machine-learning predictive analytics for prediction of postinduction hypotension. Anesthesiology. 2018;129(4):675-88. http://doi.org/10.1097/ALN.0000000000002374. PMid:30074930.
Wingert T, Lee C, Cannesson M. Machine learning, deep learning, and closed loop devices-anesthesia delivery. Anesthesiol Clin. 2021;39(3):565-81. http://doi.org/10.1016/j.anclin.2021.03.012. PMid:34392886.
Bisgin H, Liu Z, Fang H, Xu X, Tong W. Mining FDA drug labels using an unsupervised learning technique--topic modeling. BMC Bioinformatics. 2011 Oct 18;12(Suppl 10):S11. https://doi.org/10.1186/1471-2105-12-S10-S11.
Padmanabhan R, Meskin N, Haddad WM. Closed-loop control of anesthesia and mean arterial pressure using reinforcement learning. Biomed Signal Process Control. 2015;22:54-64. http://doi.org/10.1016/j.bspc.2015.05.013.
Niel O, Bastard P. Artificial Intelligence in Nephrology: Core Concepts, Clinical Applications, and Perspectives. Am J Kidney Dis. 2019;74(6):803-10. http://doi.org/10.1053/j.ajkd.2019.05.020. PMid:31451330.
Gomes BC, Lobo SMA, Sá Malbouisson LM, de Freitas Chaves RC, Domingos Corrêa T, Prata Amendola C, et al. Trends in perioperative practices of high-risk surgical patients over a 10-year interval. PLoS One. 2023;18(9):e0286385. http://doi.org/10.1371/journal.pone.0286385. PMid:37725600.
Queiroz VNF, Oliveira ADCM, Chaves RCF, Moura LAB, César DS, Takaoka F, et al. Methodological description of clinical research data collection through electronic medical records in a center participating in an international multicenter study. Einstein (Sao Paulo). 2019;17(4):eAE4791. http://doi.org/10.31744/einstein_journal/2019AE4791. PMid:31553359.
Bartek MA, Saxena RC, Solomon S, Fong CT, Behara LD, Venigandla R, et al. Improving operating room efficiency: machine learning approach to predict case-time duration. J Am Coll Surg. 2019;229(4):346-54.e3. http://doi.org/10.1016/j.jamcollsurg.2019.05.029. PMid:31310851.
Zhao B, Waterman RS, Urman RD, Gabriel RA. A machine learning approach to predicting case duration for robot-assisted surgery. J Med Syst. 2019;43(2):32. http://doi.org/10.1007/s10916-018-1151-y. PMid:30612192.
Ganan-Cardenas E, Jimenez JC, Pemberthy RJ. Bayesian hierarchical modeling of operating room times for surgeries with few or no historic data. J Clin Monit Comput. 2022;36(3):687-702. http://doi.org/10.1007/s10877-021-00696-y. PMid:33907937.
Gabriel RA, Harjai B, Simpson S, Goldhaber N, Curran BP, Waterman RS. Machine learning-based models predicting outpatient surgery end time and recovery room discharge at an ambulatory surgery center. Anesth Analg. 2022;135(1):159-69. http://doi.org/10.1213/ANE.0000000000006015. PMid:35389380.
Jia H, Simpson S, Sathish V, Curran BP, Macias AA, Waterman RS, et al. Development and benchmarking of machine learning models to classify patients suitable for outpatient lower extremity joint arthroplasty. J Clin Anesth. 2023;88:111147. http://doi.org/10.1016/j.jclinane.2023.111147. PMid:37201387.
Arad D, Rosenfeld A, Magnezi R. Factors contributing to preventing operating room “never events”: a machine learning analysis. Patient Saf Surg. 2023;17(1):6. http://doi.org/10.1186/s13037-023-00356-x. PMid:37004090.
Ajeje ET, Gandolfi JV, Cavallari V, Silva-Jr JM, de Freitas Chaves RC, Berger-Estilita J, et al. Measurements of I-FABP and citrulline in the postoperative period of non-cardiac surgeries with gastrointestinal complications: a prospective cohort observational study. J Crit Care. 2024;81:154530. http://doi.org/10.1016/j.jcrc.2024.154530. PMid:38335862.
Sabbag IP, Hohmann FB, Assunção MSC, de Freitas Chaves RC, Corrêa TD, Menezes PFL, et al. Postoperative hypothermia following non-cardiac high-risk surgery: a prospective study of temporal patterns and risk factors. PLoS One. 2021;16(11):e0259789. http://doi.org/10.1371/journal.pone.0259789. PMid:34780517.
Tavolara TE, Gurcan MN, Segal S, Niazi MKK. Identification of difficult to intubate patients from frontal face images using an ensemble of deep learning models. Comput Biol Med. 2021;136:104737. http://doi.org/10.1016/j.compbiomed.2021.104737. PMid:34391000.
Cho HY, Lee K, Kong HJ, Yang HL, Jung CW, Park HP, et al. Deep-learning model associating lateral cervical radiographic features with Cormack-Lehane grade 3 or 4 glottic view. Anaesthesia. 2023;78(1):64-72. http://doi.org/10.1111/anae.15874. PMid:36198200.
Zhou CM, Wang Y, Xue Q, Yang JJ, Zhu Y. Predicting difficult airway intubation in thyroid surgery using multiple machine learning and deep learning algorithms. Front Public Health. 2022;10:937471. http://doi.org/10.3389/fpubh.2022.937471. PMid:36033770.
Wongtangman K, Aasman B, Garg S, Witt AS, Harandi AA, Azimaraghi O, et al. Development and validation of a machine learning ASA-score to identify candidates for comprehensive preoperative screening and risk stratification. J Clin Anesth. 2023;87:111103. http://doi.org/10.1016/j.jclinane.2023.111103. PMid:36898279.
Midega TD, Chaves RC, Nawa RK, Mazza BF, Ferraz LJ, Corrêa TC. Artificial intelligence in the intensive care unit. Einstein (São Paulo). 2024;22(Suppl 2):eEDS2. http://doi.org/10.31744/einstein_journal/2024EDS2.
Bihorac A, Ozrazgat-Baslanti T, Ebadi A, Motaei A, Madkour M, Pardalos PM, et al. MySurgeryRisk: development and validation of a machine-learning risk algorithm for major complications and death after surgery. Ann Surg. 2019;269(4):652-62. http://doi.org/10.1097/SLA.0000000000002706. PMid:29489489.
Ren Y, Loftus TJ, Datta S, Ruppert MM, Guan Z, Miao S, et al. Performance of a machine learning algorithm using electronic health record data to predict postoperative complications and report on a mobile platform. JAMA Netw Open. 2022;5(5):e2211973. http://doi.org/10.1001/jamanetworkopen.2022.11973. PMid:35576007.
Onishchenko D, Rubin DS, van Horne JR, Ward RP, Chattopadhyay I. Cardiac comorbidity risk score: zero-burden machine learning to improve prediction of postoperative major adverse cardiac events in hip and knee arthroplasty. J Am Heart Assoc. 2022;11(15):e023745. http://doi.org/10.1161/JAHA.121.023745. PMid:35904198.
Shickel B, Loftus TJ, Ruppert M, Upchurch GR, Jr., Ozrazgat-Baslanti T, Rashidi P, et al. Dynamic predictions of postoperative complications from explainable, uncertainty-aware, and multi-task deep neural networks. Sci Rep. 2023;13(1):1224. http://doi.org/10.1038/s41598-023-27418-5. PMid:36681755.
Vasconcelos NNB, Queiroz VNF, Souza GM, Mangini S, Silva FMF, Costa LGVD, et al. Perioperative management of adult patient undergoing coronary artery bypass grafting and valve surgery: a literature review. Einstein (São Paulo). 2025;23:eRW1353. http://doi.org/10.31744/einstein_journal/2025RW1353.
Vasconcelos NN, Chaves RC, Pellegrino CM, Souza GM, Queiroz VN, Barbas CS, et al. Multicenter observational study of patients who underwent cardiac surgery and were hospitalized in an intensive care unit (BraSIS 2): study protocol and statistical analysis plan. Crit Care Sci. 2025;37:e20250222. http://doi.org/10.62675/2965-2774.20250222. PMid:40072977.
Zhang Y, Li L, Li Y, Zeng Z. Machine learning model-based risk prediction of severe complications after off-pump coronary artery bypass grafting. Adv Clin Exp Med. 2023;32(2):185-94. http://doi.org/10.17219/acem/152895. PMid:36226692.
Shim JG, Ryu KH, Cho EA, Ahn JH, Cha YB, Lim G, et al. Machine learning for prediction of postoperative nausea and vomiting in patients with intravenous patient-controlled analgesia. PLoS One. 2022;17(12):e0277957. http://doi.org/10.1371/journal.pone.0277957. PMid:36548346.
Bishara A, Chiu C, Whitlock EL, Douglas VC, Lee S, Butte AJ, et al. Postoperative delirium prediction using machine learning models and preoperative electronic health record data. BMC Anesthesiol. 2022;22(1):8. http://doi.org/10.1186/s12871-021-01543-y. PMid:34979919.
Lou SS, Liu H, Lu C, Wildes TS, Hall BL, Kannampallil T. Personalized surgical transfusion risk prediction using machine learning to guide preoperative type and screen orders. Anesthesiology. 2022;137(1):55-66. http://doi.org/10.1097/ALN.0000000000004139. PMid:35147666.
Souza GM, Galindo VB, Rocha DL, Vianna FS, Chaves RC. Assessment of Peripheral Perfusion in Severe Acute Respiratory Syndrome Corona virus 2 (Sars-Cov-2) Infection: An Exploratory Analysis with Near- Infrared Spectroscopy. Archives of Microbiology and Immunology. 2024;8:175-81.
Rabello R Fo, de Freitas Chaves RC, Assunção MSC, Serpa A No, De Freitas FM, et al. Assessment of the peripheral microcirculation in patients with and without shock: a pilot study on different methods. J Clin Monit Comput. 2020;34(6):1167-76. http://doi.org/10.1007/s10877-019-00423-8. PMid:31754965.
Chaves RCF, Tafner PFDA, Chen FK, Meneghini LB, Corrêa TD, Rabello R Fo, et al. Near-infrared spectroscopy parameters in patients undergoing continuous venovenous hemodiafiltration. Einstein (Sao Paulo). 2019;17(1):eAO4439. http://doi.org/10.31744/einstein_journal/2019AO4439. PMid:30785493.
Lundberg SM, Nair B, Vavilala MS, Horibe M, Eisses MJ, Adams T, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng. 2018;2(10):749-60. http://doi.org/10.1038/s41551-018-0304-0. PMid:31001455.
Geng W, Tang H, Sharma A, Zhao Y, Yan Y, Hong W. An artificial neural network model for prediction of hypoxemia during sedation for gastrointestinal endoscopy. J Int Med Res. 2019;47(5):2097-103. http://doi.org/10.1177/0300060519834459. PMid:30913936.
electroencephalogram, and electrocardiogram: retrospective study. PLoS One. 2022;17(8):e0272055. http://doi.org/10.1371/journal.pone.0272055. PMid:35944013.
Wijnberge M, Geerts BF, Hol L, Lemmers N, Mulder MP, Berge P, et al. Effect of a machine learning-derived early warning system for intraoperative hypotension vs standard care on depth and duration of intraoperative hypotension during elective noncardiac surgery: The HYPE Randomized Clinical Trial. JAMA. 2020;323(11):1052-60. http://doi.org/10.1001/jama.2020.0592. PMid:32065827.
Grieco A, Huffman KM, Cohen ME, Hall BL, Morton JM, Ko CY. Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program: Bariatric Surgical Risk/Benefit Calculator: 1-year comorbidity remission. Surg Obes Relat Dis. 2024;20(3):275-82. http://doi.org/10.1016/j.soard.2023.09.020. PMid:37867047.
Mirsadeghi M, Behnam H, Shalbaf R, Jelveh Moghadam H. Characterizing Awake and Anesthetized States Using a Dimensionality Reduction Method. J Med Syst. 2016;40(1):13. http://doi.org/10.1007/s10916-015-0382-4. PMid:26573650.
Gu Y, Liang Z, Hagihira S. Use of Multiple EEG Features and Artificial Neural Network to Monitor the Depth of Anesthesia. Sensors (Basel). 2019;19(11):2499. http://doi.org/10.3390/s19112499. PMid:31159263.
Shalbaf A, Saffar M, Sleigh JW, Shalbaf R. Monitoring the Depth of Anesthesia Using a New Adaptive Neurofuzzy System. IEEE J Biomed Health Inform. 2018;22(3):671-7. http://doi.org/10.1109/JBHI.2017.2709841. PMid:28574372.
Madanu R, Rahman F, Abbod MF, Fan SZ, Shieh JS. Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition. Math Biosci Eng. 2021;18(5):5047-68. http://doi.org/10.3934/mbe.2021257. PMid:34517477.
Ramaswamy SM, Kuizenga MH, Weerink MAS, Vereecke HEM, Struys M, Belur Nagaraj S. Frontal electroencephalogram based drug, sex, and age independent sedation level prediction using non-linear machine learning algorithms. J Clin Monit Comput. 2022;36(1):121-30. http://doi.org/10.1007/s10877-020-00627-3. PMid:33315176.
Dutt MI, Saadeh W. Monitoring Level of Hypnosis Using Stationary Wavelet Transform and Singular Value Decomposition Entropy With Feedforward Neural Network. IEEE Trans Neural Syst Rehabil Eng. 2023;31:1963-73. http://doi.org/10.1109/TNSRE.2023.3264797. PMid:37018110.
Abel JH, Badgeley MA, Meschede-Krasa B, Schamberg G, Garwood IC, Lecamwasam K, et al. Machine learning of EEG spectra classifies unconsciousness during GABAergic anesthesia. PLoS One. 2021;16(5):e0246165. http://doi.org/10.1371/journal.pone.0246165. PMid:33956800.
De Sario GD, Haider CR, Maita KC, Torres-Guzman RA, Emam OS, Avila FR, et al. Using AI to detect pain through facial expressions: a review. Bioengineering (Basel). 2023;10(5):548. http://doi.org/10.3390/bioengineering10050548. PMid:37237618.
Midega TD, Chaves RCF, Ashihara C, Alencar RM, Queiroz VNF, Zelezoglo GR, et al. Ketamine use in critically ill patients: a narrative review. Rev Bras Ter Intensiva. 2022;34(2):287-94. http://doi.org/10.5935/0103-507X.20220027-en. PMid:35946660.
Tighe PJ, Harle CA, Hurley RW, Aytug H, Boezaart AP, Fillingim RB. Teaching a machine to feel postoperative pain: combining high-dimensional clinical data with machine learning algorithms to forecast acute postoperative pain. Pain Med. 2015;16(7):1386-401. http://doi.org/10.1111/pme.12713. PMid:26031220.
Olesen AE, Gronlund D, Gram M, Skorpen F, Drewes AM, Klepstad P. Prediction of opioid dose in cancer pain patients using genetic profiling: not yet an option with support vector machine learning. BMC Res Notes. 2018;11(1):78. http://doi.org/10.1186/s13104-018-3194-z. PMid:29374492.
Hemmerling TM, Taddei R, Wehbe M, Cyr S, Zaouter C, Morse J. Technical communication: first robotic ultrasound-guided nerve blocks in humans using the Magellan system. Anesth Analg. 2013;116(2):491-4. http://doi.org/10.1213/ANE.0b013e3182713b49. PMid:23302984.
Larkin HD. FDA Approves Artificial Intelligence Device for Guiding Regional Anesthesia. JAMA. 2022;328(21):2101. http://doi.org/10.1001/jama.2022.20029. PMid:36472610.
Queiroz VNF, Falsarella PM, Chaves RCF, Francisco MJ No, Silva JM Jr, Araújo GF, et al. Evaluation of gastric content in fasting patient during semaglutide use: an observational study. Surg Obes Relat Dis. 2025;21(2):146-51. http://doi.org/10.1016/j.soard.2024.08.039. PMid:39343660.
Queiroz VNF, Falsarella PM, Chaves RCF, Takaoka F, Socolowski LR, Garcia RG. Risk of pulmonary aspiration during semaglutide use and anesthesia in a fasting patient: a case report with tomographic evidence. Einstein (Sao Paulo). 2023;21:eRC0628. http://doi.org/10.31744/einstein_journal/2023RC0628. PMid:38126547.
In Chan JJ, Ma J, Leng Y, Tan KK, Tan CW, Sultana R, et al. Machine learning approach to needle insertion site identification for spinal anesthesia in obese patients. BMC Anesthesiol. 2021;21(1):246. http://doi.org/10.1186/s12871-021-01466-8. PMid:34663224.
Hemmerling TM, Taddei R, Wehbe M, Zaouter C, Cyr S, Morse J. First robotic tracheal intubations in humans using the Kepler intubation system. Br J Anaesth. 2012;108(6):1011-6. http://doi.org/10.1093/bja/aes034. PMid:22457483.
Hemmerling TM, Arbeid E, Wehbe M, Cyr S, Taddei R, Zaouter C. Evaluation of a novel closed-loop total intravenous anaesthesia drug delivery system: a randomized controlled trial. Br J Anaesth. 2013;110(6):1031-9. http://doi.org/10.1093/bja/aet001. PMid:23427212.
Kakar PN, Das J, Roy PM, Pant V. Robotic invasion of operation theatre and associated anaesthetic issues: a review. Indian J Anaesth. 2011;55(1):18-25. http://doi.org/10.4103/0019-5049.76577. PMid:21431048.
Joosten A, Rinehart J, Bardaji A, Van der Linden P, Jame V, Van Obbergh L, et al. Anesthetic management using multiple closed-loop systems and delayed neurocognitive recovery: a randomized controlled trial. Anesthesiology. 2020;132(2):253-66. http://doi.org/10.1097/ALN.0000000000003014. PMid:31939839.
Pasin L, Nardelli P, Pintaudi M, Greco M, Zambon M, Cabrini L, et al. Closed-Loop Delivery Systems Versus Manually Controlled Administration of Total IV Anesthesia: a meta-analysis of randomized clinical trials. Anesth Analg. 2017;124(2):456-64. http://doi.org/10.1213/ANE.0000000000001394. PMid:28099320.
Joosten A, Coeckelenbergh S, Delaporte A, Ickx B, Closset J, Roumeguere T, et al. Implementation of closed-loop-assisted intra-operative goal-directed fluid therapy during major abdominal surgery: a case-control study with propensity matching. Eur J Anaesthesiol. 2018;35(9):650-8. http://doi.org/10.1097/EJA.0000000000000827. PMid:29750699.
Sng BL, Tan HS, Sia AT. Closed-loop double-vasopressor automated system vs manual bolus vasopressor to treat hypotension during spinal anaesthesia for caesarean section: a randomised controlled trial. Anaesthesia. 2014;69(1):37-45. http://doi.org/10.1111/anae.12460. PMid:24256483.
Chaves RCF, Barbas CSV, Queiroz VNF, Serpa A No, Deliberato RO, Pereira AJ, et al. Assessment of fluid responsiveness using pulse pressure variation, stroke volume variation, plethysmographic variability index, central venous pressure, and inferior vena cava variation in patients undergoing mechanical ventilation: a systematic review and meta-analysis. Crit Care. 2024;28(1):289. http://doi.org/10.1186/s13054-024-05078-9. PMid:39217370.
Chaves RCF, Corrêa TD, Serpa A No, Bravim BA, Cordioli RL, Moreira FT, et al. Assessment of fluid responsiveness in spontaneously breathing patients: a systematic review of literature. Ann Intensive Care. 2018;8(1):21. http://doi.org/10.1186/s13613-018-0365-y. PMid:29427013.
Queiroz VNF, da Costa LGV, Takaoka F, Pelosi P, Abreu MG, Schultz MJ, et al. Ventilation and outcomes following robotic-assisted abdominal surgery: an international, multicentre observational study. Br J Anaesth. 2021;126(2):533-43. http://doi.org/10.1016/j.bja.2020.08.058. PMid:33131757.
Chaves RCF, Rabello R Fo, Timenetsky KT, Moreira FT, Vilanova LCDS, Bravim BA, et al. Extracorporeal membrane oxygenation: a literature review. Rev Bras Ter Intensiva. 2019;31(3):410-24. http://doi.org/10.5935/0103-507X.20190063. PMid:31618362.
Peine A, Hallawa A, Bickenbach J, Dartmann G, Fazlic LB, Schmeink A, et al. Development and validation of a reinforcement learning algorithm to dynamically optimize mechanical ventilation in critical care. NPJ Digit Med. 2021;4(1):32. http://doi.org/10.1038/s41746-021-00388-6. PMid:33608661.
Ren W, Chen J, Liu J, Fu Z, Yao Y, Chen X, et al. Feasibility of intelligent drug control in the maintenance phase of general anesthesia based on convolutional neural network. Heliyon. 2023;9(1):e12481. http://doi.org/10.1016/j.heliyon.2022.e12481. PMid:36691533.
Freundlich RE, Grondin L, Tremper KK, Saran KA, Kheterpal S. Automated electronic reminders to prevent miscommunication among primary medical, surgical and anaesthesia providers: a root cause analysis. BMJ Qual Saf. 2012;21(10):850-4. http://doi.org/10.1136/bmjqs-2011-000666. PMid:22773892.
Gruss CL, Kappen TH, Fowler LC, Li G, Freundlich RE, McEvoy MD, Rothman BS, et al. Automated feedback modestly improves perioperative treatment adherence of postoperative nausea and vomiting. J Clin Anesth. 2023;86:111081. http://doi.org/10.1016/j.jclinane.2023.111081. PMid:36812833.
Olmos AV, Robinowitz D, Feiner JR, Chen CL, Gandhi S. Reducing Volatile Anesthetic Waste Using a Commercial Electronic Health Record Clinical Decision Support Tool to Lower Fresh Gas Flows. Anesth Analg. 2023;136(2):327-37. http://doi.org/10.1213/ANE.0000000000006242. PMid:36638512.
Marshall DC, Komorowski M. Is artificial intelligence ready to solve mechanical ventilation? Computer says blow. Br J Anaesth. 2022;128(2):231-3. http://doi.org/10.1016/j.bja.2021.10.050. PMid:34903359.
Cheng K, Sun Z, He Y, Gu S, Wu H. The potential impact of ChatGPT/GPT-4 on surgery: will it topple the profession of surgeons? Int J Surg. 2023;109(5):1545-7. http://doi.org/10.1097/JS9.0000000000000388. PMid:37037587.
Suh HS, Tully JL, Meineke MN, Waterman RS, Gabriel RA. Identification of preanesthetic history elements by a natural language processing engine. Anesth Analg. 2022;135(6):1162-71. http://doi.org/10.1213/ANE.0000000000006152. PMid:35841317.


Submitted date:
12/20/2024

Accepted date:
03/03/2025

68485af1a953954464498585 par Articles
Links & Downloads

Periop. Anesth. Rep.

Share this page
Page Sections